

CO₂ Storage at In Salah lain Wright, CO₂ Project Manager, BP Alternative Energy

2nd International CCS Symposium Paris, October 4th 2007

Agenda

- CCS Technology
- Why Demonstrate CO2 Storage at Industrial-Scale?
- Objectives of the In Salah CO2 Storage Project
- Progress to Date
- Lessons Learned
- Next Steps
- Questions

BP CCS Technology Program

Research

Carbon Mitigation Initiative
Princeton University

PRINCETON
PRINC

Industry / Academic Initiatives CO₂ Capture Project

Technical Demonstrations

Source-sink matching

CO2CRC, EUGeocapacity, Coach, US Regional partnerships

Public policy support

CSLF, ECCP, EU-ZEPP, CDM

Assurance framework

CO2CRC, CSLF, IMCO2, WRI

3rd Party Demonstrations

Sleipner, Weyburn, CO2Remove

Industrial Scale Projects

DF2

Technology Options for GHG Stabilization

Examples of Lower Carbon Slices	Scale for 1GtC Reduction by 2050
Increased energy efficiency across the economy	'Emissions/\$GDP' increased
Increased energy efficiency (e.g. vehicles only)	2 billion gasoline/diesel cars achieving 60mpg
Fuel switching natural gas displacing coal for power	1400GW fuelled by gas instead of coal
Solar PV or wind replaces coal for power	1000x scale up PV; 70x scale up for wind
Biofuels to replace petroleum based fuels	200x10 ⁶ ha growing area (equals US agricultural land)
Carbon Capture and Geological Storage	CO ₂ captured from 700 1 GW coal plants; storage = 3,500x In Salah/Sleipner
Carbon Free Hydrogen for Transport	1 billion H ₂ carbon free cars; H ₂ from fossil fuels with CO ₂ capture & storage or from renewables or nuclear
Nuclear displaces coal for power	700 1GW plants (2x current)
Biosequestration in forests and soil	increase planted area and/or reduce deforestation 4

CCS is Now in the Technology "Valley of Death"

EU ZEP Deployment Roadmap

A Business Model for CCS Deployment

syngas

manufacture

Combined Cycle Power Generation

'Carbon Free'
Electricity

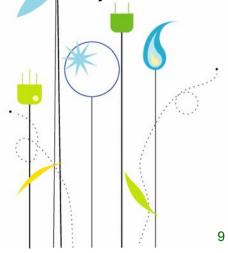
Provides optionality for future to supply H₂ into other sectors

Transportation

How Does In Salah Contribute?

Three Projects at In Salah

- Joint Project of BP, Sonatrach and Statoil
- In Salah Project(s) Overview


In Salah Gas Development (1bcf/d \$2,000 million)

- In Salah CO₂ Storage (1mmtpa \$ 100 million)

In Salah CO₂ Assurance R&D (CSLF & EU \$30 million)

Part of EU FP-6 CO2ReMoVe (\$3mm)

In Salah CO₂ Storage: Project Overview

Climate Change Milestones

- Industrial Scale Demonstration of CO₂ Geological Storage (Conventional Capture)
- Storage Formation is very similar to the North Sea (USA & China)
- Started Storage in August 2004
- 1mmtpa CO₂ Stored (17mm tonnes total) \$100mm Incremental Cost for Storage: No commercial benefit
- Test-bed for CO₂ Monitoring Technologies \$30mm Research Project

In Salah Gas Processing Plant

CO2 Storage Project

50mmscf/d CO2 (1mmtpa) Compression Transportation Injection Storage

In Salah Joint Industry R&D Project

Objectives (2004-10)

- 1. Provide assurance that secure geological storage of CO₂ can be cost-effectively verified and that long-term assurance can be provided by short-term monitoring.
- Demonstrate to stakeholders that industrial-scale geological storage of CO₂ is a viable GHG mitigation option.
- Set precedents for the regulation and verification of the geological storage of CO₂, allowing eligibility for GHG credits

Krechba Field

Reservoir

Surface

Relative Performance - Injectors

Monitoring Technology: Lessons Learned

Monitoring: Oil & Gas vs Saline Formations

Forward Plan: Next 12 Months

4Q 2007

 Soil gas depth testing, lineament analysis, microseismic testing, tiltmeters, surface flux monitoring, hydrogeology, microbiology, gravity test

Early 2008

- Full soil gas survey, microseismic array, gravity survey
- Shallow observation well(s)
- Further data acquisition from new production wells
- Hydrogeology/microbiology

Early to mid 2008

- 3D seismic survey
- surface flux
- gravity measurements
- logging

Summary

BP is Taking Big Steps Towards CCS Deployment

• What's required:

- Regulatory Framework: Is it Legal?

- Policy Framework: Will Investors be Paid?

- How to deal with: Long-term Liability?

In Salah helps to develop answers

 BP is ready to invest in CCS projects in locations where the three key questions are answered.

Thank You. Questions?

Useful Links:

- Check your carbon footprint at: www.bp.com
- Princeton Wedges: www.princeton.edu/cmi
- CCS Technology: www.co2captureproject.org
- EU CCS Roadmap: www.zero-emissionplatform.org
- lain's email: wrightiw@bp.com

